The

“Virtual Information Circuit Engineering”

Project

S.R.Swain 1997-2004

Outline

Brief

Virtual Information Circuit Engineering is a system in which solutions and algorithms can be built interactively and visually by connecting up virtual components into virtual circuits. These circuits have input/output specifications to enable them in turn to be used as components in larger, more complex circuits. These systems can be engineered to solve many information and control problems by interfacing with the outside world via a number of IO component libraries and use of specialised processing components.

Features

· Many standard libraries of components for many tasks from simple mathematical operations to much more complex ones such as image processing and 3D rendering modules.

· All component placement and interconnections are interactivly edited in an MFC based MDI application.

· Circuits can be run in real time within editing environment.

· A component has a number of inputs and outputs, each of which can be hidden and revert to default values, can be visible and hard wired to a certain value or visible and connected to a compatible information source.

· Simple data types can be freely interconnected where automatic type conversion is applicable.

· A number of basic information types are handled, e.g. integer, floating point, boolean, string. Plus many of the libraries extend this to include more complex object types (e.g. images) and composite types (e.g. colour).

· A component input can only be driven from a single component output (to avoid contention). A component output can drive any number of component inputs.

Editing

· Interconnections will be made via a drag&drop method, any inputs will be switched to matching (if compatible) output type.

· Components can be moved around a virtual workspace larger than the window they occupy.

· Components will show inputs on their left/top and outputs on their right/bottom.

· Components will have a text and/or icon for means of identification.

· Components may have built in display of their contents (for objects) or main output state (for processes). Input devices/fields will also appear on the component.

· Component inputs and outputs can show their values along side each pin/wire. For constant input values/resources they can be edited in place.

· Libraries of components and prebuilt circuits are selectable

· The workspace background can be used as a temporary component bin for holding chosen components.

· A grid can be employed to aid layout.

· A diagnostic mode will allow numerical values to be displayed at wire connection points. Logical values could be shown by wire colour.

· The circuit navigation controls will be fast to use, quick to pan round a large circuit.

· A component properties dialog can be invoked which provides full configuration of IO channels in use and any online help applicable to it.

More details of an extended feature set are listed in Appendix A.

Specifications

Design

Implementation

Appendices

Appendix A – Extended Feature Set

Extended Features

· External file resources are available to components needing to work with larger more complex entities, such as images and models.

· Circuits can be run standalone with no editing UI available (smaller footprint).

· Watches can be attached in the editing environment to observe different process stages in real time and in a suitable form. For example, viewing an image halfway through a composite or graphing an internal parameter in a control system.

· Circuits and resources can be packaged up into a single datafile, including library components. Perhaps even into a single EXE.

· A component inputs can be hard wired to a resource.

· Custom composite types can be built allowing simplification of interconnections between higher level modules.

· Components and their connections can be arrayed, or collected such that individual circuits can operate in parallel. These will have special IO connections for iterating through members in turn, and controlling the number of members.

· Where a circuit developed to control a single entity (e.g. a game object), it should be easy to instance this object multiple times and it’s control circuit within the game.

· Connection types can be arrayed to represent collections of objects and values.

· Components can be switched to being ‘arrayed’ which yields an extra input connection allowing an array to be connected. This configuration allow these collections to be iterated through by the same component.

· New connection types can be created by combining a number of individual connection types. These allow complex interfaces to be reduced to multi-way connections, thus simplifying the wiring of such components. Implicit combination and breakout components are generated for getting at the sub-connections.

· User interface components can be added to a circuit, these can be connected to a dialog component which represents a Windows dialog containing them. There should be a visual editing mode for laying them out on the dialog. These UI components can constitute inputs and/or outputs for the dialog.

· Many component types can have a number of basic inputs and outputs to do with overall management of circuit components. This might include ways of delaying the loading of resources used by a component, disabling the updating of a component, and even delaying the loading of the circuitry within the component itself. Although this raises issues in itself, there are many places this will be advantageous.

· Dialog components and dialogs themselves may warrant extra control inputs for enabling and show/hiding them.

Extended Editing

· Libraries are selectable through an intuitive library management and viewing window. Icons, descriptions, names, and families all form ways of sorting, viewing and selecting desired components.

· All wires will auto-route between components.

· Composites and buses will generally be drawn thicker that single connections.

· The circuit navigation controls can perhaps support auto zooming out as you move further around. A zoomed out overview may be desirable.

· The appearance of many circuit elements can be customised to provide alternate visual styles, e.g. standard windows, pcb style, vero style, spacey, electrical.

· Components (and wiring to them) can be designated ‘diagnostic’ and enabled/disabled according to debugging requirements. Particularly relevant for signal monitoring output components.

· The availability and visibility of IOconnections can be governed by complex rules, for example a concatenation component may only expose one extra input at a time as the available ones are connected to.

Notes

Components

Connection Types

· character

· short integer

· integer

· floating point (includes constants for Pi, e, root2, etc.)

· string

· colour (includes constants for basic palette)

· resource (numerous subtypes, e.g. image, sound, model)

Composite types

· vertex

· fcolour

Simple Components

· Maths and logic: add, subtract, multiply, divide, negate, modulus, power, log, ln, sin, cos, tan, asin, acos, atan, min, max, ave, interp, clamp, shift, rotate, and, or, xor, not, less/equal/greater than.

· Decoding/sequencing: (de)multiplex, priority, binary, bcd, signal generator (binary, integer, float), sequencer, transfer function, expression evaluator.

· Image processing: brightness, contrast, scale, crop/clip, warp, filtering (e.g. edge, blur), flip/mirror, masking, quantising, remapping, (de)palettising, thresholding, filling, tiling, compositing, format conversion.

· Input: time, frame, keyboard, mouse, comms (serial, parallel, network), system event, audio sequence.

· Output: file (e.g. image), window (2d/3d), diagnostic indicator, graph, audio, comms (serial, parallel, network), system event trigger.

· Complex: compositer, renderer, CPU emulator.

· Storage: image (texture), model, material, text/string, container/array, memory.

Implementation

· Hierarchy of virtual circuits built around a large library of reusable components.

· The operational part of every component will be kept separate from the editing part. This way, a smaller footprint circuit can run standalone. The editing side can be invoked seperately and ‘connect’ to any ‘live’ sub-circuit within the editor.

· Core components can’t be opened as they have no circuit within and are implemented in code.

· Some components will be implemented via an expression evaluation mechanism.

· Updates across the system will be some combination of forward and reverse event propagation. Old data will be looked for via an age/frame member where recalculation is only required if it’s value is not the same as the current frame. Reverse propagation may be the only option as output:inputs form a one to many relationship.

· Inputs and outputs will be managed via a ‘pin’ class which will be responsible for maintaining an input connection, input default value, tracking changes, and triggering output updates.

· Component (and to a lesser degree circuit) persistance needs a good solid filing system layer so the least work is involved in writing the save/load code for each component and circuit. A streaming approach may be best here.

· MFC application framework to be re-usable and app specific code to be interfaced to it (perhaps via COM-like interfaces). This allows standard app functionality to be accumulated seperately from app specific code. For example, by disconnecting the View UI and drawing code from the MDI View (perhaps via IWindowInput and IWindowOutput interfaces) the same code could be used for drawing a style formatting and skinning preview in a config screen.

· Files formats could be ‘chunked’ to allow easy storage and seggregation of circuit execution data, editing data, and diagnostics data. This would allow post processing of data files to strip out diagnostic data before release, and also of editing data when building standalone applications. The circuit itself would load the execution data, the editor would load the editing data (when circuit opened), and diagnostics data would get output from debug builds of the code.

· Diagnostics output chunks in data files should completely describe the content of the binary execution and editing data so that it may be possible to make changes to data by hand and have them automatically read instead of the binary version. This would allow minor manual fixes to the data.

· The filing system would need a set of option and behaviour flags for all file types supported. Perhaps a config file, perhaps some hard coded. This would indicate such things as; Tga files are binary not chunked and contain no diags data.

· As a free running real-time system, updates to the circuits will occur as fast as possible. These updates will be governed by a ‘frame’ count that applies to the whole circuit. This frame is used to track which outputs have already been re-calculated for a given frame so that multiple inputs connected to it won’t cause multiple updates as they all request up-to-date information.

· Input pins are responsible for providing all data to a component to carry out it’s task by requesting up-to-date information from the output pin it’s connected to. If there is no connection then the default or constant value set on the pin is supplied.

· Output pins are responsible for ensuring they update the information they provide when requested by an input connected to it. This is done via an update function for that pin, and is only called once for any given frame. An update function may update more that one output pin for the component it belongs to, thus inputs connected to those pins may never actually need to cause an update themselves.

Resource Management

Examples

Scenarios I want to be able to implement:

· Custom image processing operation such as splitting up an image into tiles, processing them and performing format conversion before saving.

· Simulation and control system for developing robots and animatronics.

· A real time integrated lighting control and graphical effects system to run across multiple displays (via separate machines).

· Developing internal control and sequencing systems for game objects and environments.

· Interactive image compositing (layering) and editing (painting) with fully adjustable parameters and special effects (colorisation, transparency). Even then allowing interactive material and model editing and real-time previewing.

· I want it to be possible, without having to go through too many hoops to create batch processing and functionally operating systems, even though real-time (stateless) systems are the aim. Implementing discreet processing blocks that need to occur seperately, yet run complex sub circuits. I think perhaps the ability to enable/disable circuits and sequence them together should allow this sufficiently well, for example if several processing stages need to be performed in sequence, for example in a pipeline, and perhaps including some external spawning of applications, then a simple sequencer can be built to control the active stage of the process which gets advanced by each stage that signals it’s own completion. Construction a finite state machine to introduce states into the equation, if you will.
Issues to resolve

· How to logically represent the fact that for certain object processing operations you can either manipulate the incoming object (non-const inputs) and pass it on directly as an output, or, mirror the input (const inputs) with a new copy of the object and put the processed result in that and present that as the output.

· Issues of arrayed signals and whether the need to represent a more collection types (sets, lists, maps, etc).

· Is the arrayed component concept going to work?

· Would it be worth the editing environment calculating the update paths and update sequences required for the components in advance of them executing? Probably not as the update requirements for a component may change during execution. for example; a multiplexor will switch a signal from one of many inputs to a single output, thus for a given frame, only one of the inputs will cause an update.
· … but will this cause circuits to be suspended that may depend on update requests to operate? I think this sort of non-deterministic circuit should be discouraged for exactly this reason. This suspension is useful to maintain the efficiency of a system particularly when there are a large number of modules that may get used at different times.
· …but what about iterative, simulation modules, they will fail to operate when not referred to, e.g. selecting which of several parts of a simulation system to view via some graphical output. Only the watched pot will boil, as it were. Hmmm, this is a problem, maybe soluble via deliberate signal sinks to force updates.
· As part of the whole push/pull debate of event propagation, if due to link directionality pull propagation is required, what should constitute a valid source of this pull? Any visual output that needs updating, any system output (control, comms, visual, audio)?

· Allowing dialogs and controls to be presented by an circuit could cause interferance with the realtime nature of the system. Don’t know if it’ll be a problem though.

bits and pieces to be integrated into above doc…

Hierarchical component based system.

Root (discrete) components (called ‘Info. Components’ or ‘IC’s) contain code to operate the functionality of the component and expose interfaces for all inputs and outputs.

Virtual circuits (‘CCT’s) can be made up of networks of these IC’s, which can in turn expose their own IO interfaces and then be used in the same way as the IC’s.

Any instance of any circuit can be opened up in the editor to reveal the components and circuits within (protection permitted).

Visual editing of virtual circuits

Fully visual editing of circuit and component configurations will be available. Circuits can run both outside and inside the editor, when inside they use an extended footprint that contains data and functionality to allow editing.

Consistant IO interface

All CCT and IC inputs and outputs will share certain common functionality to allow compatible types to be connected. All outputs can feed any number of inputs, but any input can only be fed from one output. All components should expose its internal values as inputs to provide maximum flexibility and so that its configuration can be changed dynamically.

Composite connections

Several connection types can be collected together and treated as one. This can be used to provide simpler component interfaces where commonly occurring compositions appear. Breakout components will become automatically available when these are created to allow access to individual connection types within the composite, as well as to construct composites from separate connection types.

Arraying of connections and components

Connections and components may be arrayed to produce a set if identical circuits operating in parallel. This will allow multiple instances of an object to operate together, such as particles in a particle system component perhaps. Some components may expose arrayed connections anyway, for example, vertices from a component holding a 3D model.

Connection types

Simple types such as integer, float, bool, char. Composite types such as colour/alpha, coordinate (2D & 3D). Complex types such as images, renderers, polygon, vertex.

Examples and case studies

Examples of use that I can think of so far:

· Analogue control system development framework, e.g. intermediate stage in animatronics control system.

· Image processing framework for building complex, custom processing applications.

· Data driven control modules for game components. Running complex game models in a similar way that you can animate in a 3D package, e.g. with expressions, constraints, links, sequencers.

· Toy for developing coding/logic skills.

· Workshop for developing ideas and producing working mock-ups quickly and easily.

· Framework for developing graphical effects. For demos, externally controlled light shows, etc. Could be run from lighting desk via suitable interface, maybe even be used to control the lights in coordination with the graphics.

Connection Classifications

By considering the various ways that a connection may be formed I hope to understand the requirements for this aspect of the system better, find some solutions to existing connection issues, and approach the ideal scenario (one that fulfils all the current requirements).

Control Channels

· Simple data types, passing by value, pull or push propagation, e.g. int output connected to int input. Connections represent the controlling and information providing channels, information ‘flows through’ them.

· I like to think of these running left to right in circuits.

Processing Channels

· Object processing, passing by reference, push or pull propagation, e.g. pass-through of a processing component connected to an object. Connections represent attachment to an object, and implies an ordering with which process components are applied.

· I like to think of these running top to bottom in circuits, akin to stacking up of operations being performed on an object.

Arrayed channels

Can correspond to a number of things:

· Elements of information in a container, e.g. characters in a string, strings in a list.

· Collections of objects, e.g. particles in a particle system, polygons in a model.

Connections to arrayed inputs and outputs. Encapsulates parallel control lines or processing operations. Output determines width of channel, from either a specifically arrayed output, or from a normal output on an arrayed component. Single channels can connect to multichannel inputs (all receive same information).

Composite channels

Individual information channels of differing types can be grouped into composite channels for ease of manipulation and connection.

Some outputs/inputs may already be composites, e.g. a position vector made up of 3 floats.

Hmmm…

If I try to use (say) ‘personal details’ as a composite, I start to think of it as the properties of an object again rather than just a collection of immediate data. It seems like I would be trying to pass an object by value in this case. Perhaps then we should allow objects to be passed by reference for processing components to act on, or by ‘constant reference’ for use as sources of control channels. To clarify by example; an image object may be passed via a processing channel to a brightness component to have it’s brightness modified (say), yet it could also be passed as a control channel (similar to a composite channel) (so that it can be switched, etc, problem?) and passed through the system until some other circuit breaks out the image to access it’s width and height outputs (say).

Connection classifications

Inputs

These are connection points available on the inside of a component that manage connection to the internals of the circuit. They channel information into the component.

Outputs

These are connection points available on the inside of a component that manage connection to the internals of the circuit. They channel information out of the component.

Component classifications

It seems that it may be useful to make a distinction between fundamental component types:

All types may have input and output connections.

Logic

These hold no internal state data other than at their inputs and outputs.

These manipulate information, generating output as a direct result of input.

Processors

These hold no internal state data other than at their inputs and outputs.

These perform operations on objects and information stored within them.

A pass through connection facilitates access to the object they are to manipulate, this allows stacking of processors.

Objects/Stores

These contain internal state information and are acted upon by proessor components. The internal state can also be affected by inputs, and may generate outputs.

But...

It occurs to me that all components can be thought of as objects to some extent, even something like a simple ADD function, as its output holds the calculated sum of its inputs and buffers the calculation for later components in the chain to reuse. Better still, as this is akin to a chain used to process an image (but contracted into a single component), we can think of a control component as a process and an object/store component combined into one. This leads me to question whether we can use this simpler process-store model throughout, not needing the shorthand ‘control component’ model.

An alternate model

Lets investigate the process-store idea.

Before (composite components):

 Ain -,_|A |

 _| + X|--, ____

 Bin –‘ |B___| |__|E |

 ____ __| / Z|-- Zout

 Cin -,_|C | | |F___|

 _| - Y|--‘

 Din –‘ |D___|

Evaluation sequence:

X=Ain+Bin, Y=Cin-Din, Z=X/Y, Zout=Z

After (buffered processing components):

 ____ _

 Ain -,_|A | | |

 _| + |-|X|-, ____ _

 Bin –‘ |B___| |_| |__|E | | |

 ____ _ __| / |-|Z|- Zout

 Cin -,_|C | | | | |F___| |_|

 _| - |-|Y|-‘

 Din –‘ |D___| |_|

Evaluation sequence:

X=Ain+Bin, Y=Cin-Din, Z=X/Y, Zout=Z

Unbuffered (buffering objects removed):

 Ain -,_|A |

 _| + |--, ____

 Bin –‘ |B___| |__|E |

 ____ __| / |-- Zout

 Cin -,_|C | | |F___|

 _| - |--‘

 Din –‘ |D___|

Evaluation sequence:

Zout =A+B, Zout=Cin-Din, Zout=Zout/Zout : cleary wrong

It’s obviously a pain to have to provide stores for even the simplest processing components, but they are generally need. Perhaps the smaller components should come with them, but the larger ones not.

Other thoughts

Having to explicitly provide buffering objects can cause problems, which is why I liked the idea of horizontal connections for control channels (implied buffering), and vertical for processing (explicit buffering). Example of the problem:

 ______ ____ ____

 | | | to | | |

 abc-–|string|--|caps|--|rvrs|--CBA

 |______| |____| |____|

Should theoretically could be rearranged to perform a different function:

 | to |

 ______ ,-|caps|--ABC //in fact produces CBA

 | | | |____|

 abc-–|string|-+ ____

 |______| | | |

 ‘-|rvrs|--cba //also produces CBA

 |____|

But in fact, produces the wrong results. Here, non buffering before split causes the two processes to be applied to the same string, hence both outputs are infact CBA. This is a pain because connecting the circuits in this way is possible, it just a) doesn’t do what it’s supposed to, and b) isn’t particularly useful for anything else. More specifically, if the following was constructed, even stranger behaviour is produced:

 ____ ______

 | to | | |

 ______ ,-|caps|--|string|--ABC

 | | | |____| |______|

 abc-–|string|-+ ____ ______

 |______| | | | | |

 ‘-|rvrs|--|string|--CBA

 |____| |______|

Here, although the top branch appears to work, the bottom one exhibits the effects of both processes, even though it doesn’t appear to be connected to the top branch! This is because the processes are actually being applied to the string on the left before being copied to the strings on the right. In this case it’s just that the first string happens to get copied after only the ‘to caps’ operation has been applied. In fact, depending on the order the circuit was wired up, it may have been that they may have been applied the other way round resulting in ‘CBA’ and ‘cba’ at the outputs respectively.

This is clearly a situation we want to avoid arrising because:

1. It’s not clear what the outcomes will be.

2. The outcomes will often not be what is expected.

3. The order you edit/create the circuit affects the outcome.

4. It will be very difficult to spot bugs in circuits caused by this.

5. Even a simple case like this could cause havoc, let alone anything more complex.

This helps restore some confidence in the control (horzontal) and process (vertical) editing model as the vertical (visual stacking) layout helps illustrate the way several processes get applied to a single object in turn, and it is expected to behave differently.

The notion of the ‘constant reference’ being passed horizontally is still applicable, for example in a compositing application. An example of all the ideas above is demonstrated here:

 |__clear__|

 _________ ____|____ _________

 |_image_A_|---|_overlay_| |__clear__|

 _________ ____|____ _________ ____|____

 |_image_B_|---|___add___| |_image_D_|---|_overlay_|

 ____|____ ____|____

 |_image_C_|-----------------|_overlay_|

 ____|____

 |_image_E_|

Here, the ordering is important, image A and image B must be added together independantly before being overlayed over image D, the resulting image stored in E.

Here, images are connected both horizontally, and vertically,

The cost involved in the above layout is the extra image storage stage C, but this is essentual to produce the desired results and in (nearly) any other system implementing this compositing operation would require the same.

Routing of process channels

It’s perfectly reasonable to expect to be able to route and switch processing channels as you would control channels. Looking into this we find an important rule; ‘process chains must be serial’. By this, we mean that the process channel must pass through a series of processing components in turn, it can’t be branched, i.e. a process output can only attach to one process input and one process input can only be fed from one process output. This doesn’t exclude switching of a process channel from one source/destination to another. It would also mean that to include an external process (e.g. in another component connected to it’s inputs) within a chain requires both an output and an input so the chain loops out and back into the component.

Types (again)

This means we will have two types of channel, control, and process. Objects that expose a pair of process connections, can also expose a control channel version of themselves to provide a (constant process channel) a channel that can’t be processed, but can be used as an information source (as in images A, B, C, and D above).

About arrays

These could be very useful for implementing many things, but I think they will come with quite an speed/size overhead, and some complications. Here I’m going to look into them further to try and identify some of the problems that might occur.

What do we mean by arrays?

Well, arrays of objects can be used to represent containers of objects, e.g. lists/queues/maps/vectors/sets, etc. In the case of processing components it can mean a process that’s being applied to each object in an array of objects. Some examples to help get a feel for what’s needed:

 _____ ________ ______

 | | |,--------, | |

 | int |--|| string |--| file |

 |_____| ‘|________| |______|

Here, an int is used to index a collection of strings (list) which is then used as the name of a file to open. Hmmm, this isn’t very good. How would another piece of circuit use the array to also look up a name? Perhaps, the list would better be accessed by an access component connected to a constant-reference from the list, thus:

 |,--------,

 || string |--,

 ‘|________| |

 _____ ____|____ ______

 | | | | | |

 | int |--| index |--| file |

 |_____| |_________| |______|

This way, multiple circuits could access the same array, and the array can be easily connected to external circuits.

Issues this configuration raises:

· Does an update coming from one connection cause the whole array to update? or just the elements being accessed.

· Does an arrayed component actually mean fully duplicated component + input connections + output connections?

· Singular control inputs (and control outputs) can be connected to all array elements, the array as a whole (special array IO), or to a particular connection. How is this implemented/edited?

· How do we iterate through an array using a single circuit?

Lets look at these in turn:

Array updates

Alternatives here are as follows:

1) single access causes single update.

2) single access causes full update.

3) some clever intermediate decides when to do a full update, e.g. on second access.

Arrayed components

Array IO

Array iteration

Rather than duplicate up the iterating circuit into another array of the same size (size cost), we want to be able to apply a circuit multiple times to the elements in an array within one frame. Three questions here:

1) How does this fit in with the frame validity checking (aging/refreshing of connections)? Does this mean we need sub-frames, or some frame hierarchy? Would ideally like to be able to keep the same ‘flat’ frame system.

2) Would it be better to force user to organise their systems to implement subframe updating instead? For example by using switches to disable parts of circuit that only need updating once per array scan? - Surely not, this is horrible, can’t imagine how complex even a relatively simple circuit will become to handle this. Not to mention the fact that the number of scans and number of circuits scanning is very likely to change over time.

3) ARrrrrgh?

Perhaps some way of encapsulating the scan to introduce this ‘sub-frame’ layer idea? This would mean that all circuits up stream would become part of the subframe. This would cause problems as it would be possible to connect a subframe input to a normal frame output – although would this be a problem?

Component Templates and Instances

This is an issue that arises from the need to edit circuits. Since components can be re-used in a circuit, this implies that the internal state of the component is stored seperately for each place it is reused (as typically in each place the component will have differring inputs and hence differing state), and the structure of the component which stays the same (it’s what makes it that particular circuit, and describes how it works). This state part is called a component instance data, and the structure part is called the component template data.

And so, this raises the issue of what to show in the editor when a particular component circuit is opened up for editing. Obviously, the structure will be that of the component (template data) as it is the same for all instances. The editor will also be able to show state data on the components within the circuit, e.g. signal levels, component state, diags info, but which instance of this circuit should it show? Well, the obvious answer is ‘the one that was opened’. I think this is fine as a general rule, and can’t think of anything that would break this, except for one case: If you open a component circuit by specifying ‘file open’ (say), there is no context for you to open it in, hence it can’t show you any state information, but this is ok as none should be expected, it’s just that the editor needs to be able to cope with a state-less circuit.

View needs to connect to the instance opened, and the template for that instance. The instance can’t exist without the template, but it is optional for the view.

Changes to the template layout will instantly be available to all instances of that component as they will all refer to the same template resource. These changes however will have to be applied to all instances as they occur. It might be quite complicated to do this (at all, not just because there are multiple instances to modify), as it is live state data that we will be updating and it will usually affect it in some way. Changes may also require the autopropagation of connections out to other circuits and visa-versa.

Research, planning and tests.

Research

Simple test code/classes

Classes for connection pins (srsPin), and ccts (srsVIC) have been written and basic tests carried out. All operated successfully, and several points have been raised:

· Reverse target propagation has been easily incorporated into the connection system.

· The need for special string handling is required, e.g. a string class and management of strings.

· Problems have arisen with pin ‘types’ in that do pins convert compatible data types automatically, or do you need component support for multiple versions of general data manipulators. For example, the ADD operation can apply to ints, floats, and even strings, so do you have multiple parts appear in the editor and choose the right one for your data, or do you only present one and it switches to match the data you connect to it? This itself raises another question; do you actually provide several versions of each component, or is it implemented as one that can switch the types of it’s inputs and outputs? (I favour the latter, the editing part of the component can handle this).

Graphical/functional test

Test successful so far (see DiceTest2 project). It’s going to be a great tool for a variety of applications and be fun to use as well. It has thrown up various issues so far:

Event model vs. polling model

The current plan is to use the polling model based on the premise that you have to scan all nodes every update anyway to spot changes that need to propagate forward. On further thought this method is going to become inefficient for larger circuits and I’m wondering if a more complex event driven system would provide better results.

One of the advantages of the polling model is that the primary scan paths follow 1:1 links (since an input is only ever driven by one output). (Forward propagation of events requires lists at each output pin of (potentially) multiple inputs being driven (1:many).) This does mean however that you have to scan the entire network every update. Now this may be highly optimised, but it’s still the entire network. Another concern for the event driven approach is the risk of missing parts of the circuit that need updating. Conversly, polling may update parts that don’t need it.

Hmmm. More thought required.

I think the reverse propagation method might have to be the way forward, if there are earlier circuits that need updating even thought the are ‘switched’ off, then you should use a different method of disconnecting them, e.g. a multiplier instead of a switch. This will have to be something that the designer needs to be aware of when building a circuit, i.e. it should be part of the design process.

Having said that, it just occurred to me that by knowing which components are sinks and which are sources, you might be able to apply both methods; First do a polling update from all sinks back towards sources, then do event based updating forward from all sources…hmmm, not sure if this would work. I know you would get a 1 frame lag from the sources updated in this way, but since they are not being used it won’t matter, if they are used, the polling propagation would have updated them anyway (and hence not require an event drive pass). It could work ok, but means that the connections between components become more complicated (to support both as required), and there may be problems with certain types of component.

IO types and automatic conversion

Expanding the connection types has led to a system of automatic conversion to be provided at many of the nodes.

This comes at a small cost (using switch statements), which may over a large circuit represent a considerable loss of performance. An alternative to this ‘data driven’ approach is for components to provide separate update functions for each combination of pin types. This however will lead to several problems; duplication of functionality, increase in code size, problems handling large multi-pinned components. Much that I don’t like introducing more processing into the common pin update and propagation code, I favour the data driven approach.

More thought required on how to optimise this approach.

Interpreted components

Whilst looking at the type conversion problems, and an old idea for a general expression evaluating component, the possibility of an interpreted approach to many components sprung to mind. Given that the type conversion is pre-determined at edit time, the processes going on in a component (including the conversions required) are fixed. Ideally, some ‘compilation’ process for generating the code to run each component configuration would provide the most optimal approach (as in the traditional hard coding approach). This however is not what this project is about, so a data driven approach to circuit coupling and connection is required. So, I was wondering if a byte coded (say) approach would provide (on balance) a more optimal approach to creating a lot of the required components. The expression evaluating component would have to work in a similar way anyway for efficiency, you’d need the editor for it to ‘pre-compile’ the expression into a series of commands for some stack based reverse-Polish calculation engine. This system could similarly be applied to some of the circuits in general, including any required type conversion operators.

I’ll write some test code to explore the calculation engine idea further.

. . .

Tests successful as far as an expression evaluation engine go so far. I’ll have to have a go at implementing a general purpose expression based component base class. Here, you would create a new component by simply deriving a class and implementing a couple of simple functions; setup (add pins, with name, type, info), function (returns function string), and perhaps some visual representation information retrieval too, e.g. shape, icon, etc.

Could help the possibility of producing a circuit compiler for faster execution.

Excel and VB similarities

Having got into writing some quite advanced spreadsheets, it has struck me that the approach to analysing data using spreadsheets forms a particular kind of programming methodology. I’m not sure what it would formally be called, but it has things in common with the system I’m designing here. It’s all about chains of dependencies with Excel spreadsheets, and I’m wondering if the use a push or pull approach for that. Having noticed that above a certain size, the cell evaluation operated differently I’m wondering if they don’t use both, one for small scale updating, and one for large scale updating. The cells in the sheets correspond to the output nodes of components in my circuits. All the ‘components’ in a spreadsheet are formed from completely general-purpose expressions, with no hard coded solutions. They must use some byte compiling approach. In fact as I write this, the more I think they are fundamentally the same. Perhaps some research into spreadsheets might throw up some solutions to problems I’m having here.

Above that there are things that my system will be able to do that are no way possible in a spreadsheet; image processing is an example.

Windows for components?

Useful to be able to rely on the windows GDI to clip to other components. Not sure how good this will fare in the long term for larger components. Probably the best route though as can use all standard windows controls on component.

..want to use custom UI except for standard controls. Default skin will emulate windows style.

Resource System

The more I look into this system, the more I think there will need to be a geneal purpose resource management system to look after all the components, circuits, and objects involved.

Where game objects are concerned, it’s much more efficient if shared data (e.g. multiple instances referring to the same image/model) and code (e.g. for initialising multiple instances of a circuit) is accessed via a reference counted resource.

Examples: Image file, 3D model, 2D layout, sound file, config file, text file, arrayed circuit or component.

Things to look at and try out..

· Expression driven components test.

· IO configuration test; dialog to select which pins are exposed.

· Circuit manager, handles all circuit construction.

· Circuit editing wrapper tests.

· MDI app tests.

· Develop project model to allow editing (use MDI for sub circuits, not each macro circuit?

· Project persistence; using script method perhaps?

· How to manage and structure project resources, e.g. hard coded input resources like images, models, etc.

· Develop concept of skins for displaying circuits in different styles.

Prototype

I need to start developing this system, but am very short of any time to spend on it. I am going to have to work to a severely cut down specification. Areas greyed out in the spec above are not to be implemented at this stage.

Prototype Plan

Framework

MFC app.

CircuitDoc and CircuitView classes.

Circuit classes

Circuit engine/manager

Circuit class

Component class, derivations: expression based, hybrid, integrated.

Pin class.

Edit classes

Component window class.

Component i/o dialog

File system

Folder class.

File class.

Chunkfile class. (for split into execution data, edit data, and diags data).

Serialisation helpers.

Object persistance (prop maps?).

GUI

Editing of components, movement, wiring

Component UI: icon/name, pins, output window, etc.

Project Structure

Engine

Engine

Pins, connections.

Update engine.

Connection auto-propagation management.

Circuit editing.

Component template/instance/factory

Component template (resource), instance (object), and factories.

Component manager

Registers available circuit types.

Scans external component libraries (later).

Managing new project specific components.

Load / Save

Circuit loading (/saving)

Support Libraries

Will use the following from the srs library (including MFC portion):

Containers

File system (file io/persistance)

Resource system

Image and 3d gfx support (later).

Editor

App

MFC app, very basic framework.

Circuit View (edit circuit template[, view circuit instance]).

Circuit Document, hooks into managed circuits as opened.

Transport controls (play, pause, step, reset).

Configuration persistance and editing.

Component visualisation

Component window

Identification

Display

Inputs/outputs

Wiring

Library management

Component library management and view.

Component pin config dialog.

Inputs/outputs, flags, naming, etc.

Editing

Component editing interaction

Connection make/break

Circuit editing interaction, propagation to all instances.

Wiring editing interaction, routing issues.

Command system (for multi-dispatch (instance editing), undo/redo, and, remote editing).

Load/save

Classes

Support Library

CPropertyEditor – generic property editing window/dialog

PropertyMap – property publishing mechanism

VariantPtr – data pointer with property information attached

App

CViceApp (CMainFrame, CChildWnd)

CComponentDoc

CComponentView

Engine

Pin – interconnection point

Circuit – collection of components and connections (refs: circuit template,

Component – instance of a circuit in another circuit (may be integrated/hard wired)

CircuitEngine – manages current circuits and

Component template/instance/factory

CircuitResource – circuit template

CircuitInstance – circuit state.

CircuitFactory – for creating resources and instances

Component manager

Registers available circuit types.

Scans external component libraries (later).

Managing new project specific components.

Circuit/Component/UI Relationships

C: Circuit instance (state of a circuit)

C: Circuit template (structure of the circuit)

C: Component (a circuit placed in another circuit, connection marshall)

UI: Circuit view (components in the circuit, shows state of a circuit)

UI: Circuit dialog (circuit as a component in another circuit, state is part of other circuit state)

New Ideas

Connection inheritance

An input to a circuit can be flagged as inheritable, then any circuit within it can have access to it. This will help, when modularising systems, to reduce the amount of io channels you will need to setup and maintain by hand to spread shared or common channels down into the sub-circuits.

It will also make implementing system globals easier, as these can be added to the top level circuit and connected to the first layer of sub circuits as inheritable and the whole system can get to them.

This would normally apply to input channels/pins as outputs can only have one feed which would make circuit design more difficult.

[diagram: global channel passing into a top level module and being available in all sub modules]

Connection optimisation

All connections are propagated outwards to remove any ‘pass-through’ connections. The editor needs to track these propagations as it will need to untangle them should any part of the chain they skipped be edited. This propagation is invisible to the user, the system should do it automatically. On loading, this process will need to be reapplied, as we can’t assume that any previous propagation will work out the same as an external module we were connected to may have changed.

This should make the usefulness of pass through connections completely out-weigh any speed penalties that might prevent their widespread use.

[diagram:connection propagating out though several circuit boundaries]

Modelling

Applying the VIC approach to developing and rendering 3D models could work like this:

Modelling:

Params (Primitives (Model

A model is a collection of parameterised primitives. These parameters generally include transforms.

Rendering:

Models (Transforms (Models (Render-Stage (Renderer (Surface

Models can inherit transforms from other models (to form hierarchical models)

Models are added to the rendering stack via a rendering stage, there would only be one render-stage in a simple app, additional types are available, e.g. for special z-buffer handling, special ordering requirements, switchable sections (worlds?), or special sorting requirements (transparency?).

Surface would usually be the display (or display window), but could easily be a texture.

Materials:

Params (Material (Material-Library

Materials should be built up and connected to a library object to manage them. They are then available as resources for other components to anonymously request (e.g. models don’t want to have to worry about connecting through numerous circuits to get at an actual material object – perhaps this is a good model to apply generally throughout, it could help solve a number of game related system construction issues, mainly ‘tyranny of connections’ issue when you have a world populated with objects, how do they all get dynamically created, setup, etc.).

Materials should inherit from a parent material (via some connection type), to allow the material library to build up a degradation hierarchy for LOD control (i.e. for every material, there are a number of simpler materials that can be selected according to detail level.). This would make procedural modelling with a detail-level parameter much nicer.

Hierarchical sequence triggering

Some method of allowing sequencers to trigger another sequencer to run but pause until it has finished might make sequential processing a lot easier. Need to consider this working with things other than sequencers so that parameterised processing can affect them.

Perhaps ‘halt’ input channels for the sequencer, so that when a mark placed on the halt channels timeline is reached, sequencing stops until that input channel is triggered. The halt channel could have a matching output that triggers at the moment a halt occurs.

[diagram: sequencer with halts on and io being used]

Driving Outputs

This is another name for objects and channels that act as sinks for information, and hence drive the updates through the system.

The most obvious example of this is the display, a less obvious one is the Quit output channel, when this is triggered, the application will shut down. As this is the ultimate fate of a program, it will be constantly polled by the VIC engine and can be used to drive the circuitry along.

Global IO

I was wondering how to decide what connections should be available at the top level (application circuit). Most sources of pure input are from system sources (e.g. mouse, keyboard, file), and most of these are most suited to be represented as an object you can place in your circuit. This leads me on to whether there are some objects like this that need to be singletons (only one allowed globally). Perhaps for example the command line string should be a global input, and the ‘quit’ channel should be a global output. However, I believe that for generality and easy encapsulation (of say an apps command line processor) they should stay as objects, and that there should be no global (app) inputs or outputs. If the player wants multiple exit points, they should be added wherever they are needed, they can be used as info sinks too then, similarly, if more than one circuit wants the command line, then it should be allowed to have it. It will make adding of off the shelf components easier as they will require fewer connections to work.

Multi-Pins

Inputs to a circuit that can take as many connections as it likes (although can be capped). Useful for collecting together numerous disparate channels, e.g. models for rendering, materials into the material manager.

Could also be used to allow output pins to be inheritable (see above).

Debugging components

Components such as asserts could be included to check conditions as the program runs.

These will get optionally loaded at runtime according to some debugging flag (debug engine only perhaps).

Any circuitry can be flagged as a debugging aid, and will be displayed differently so it is clear to the user that this is the case, and that these components won’t appear in the final run. They should be ghost-able in the editor too. Any components that generate output that are tagged as debug will cause any components depending on that output to also be flagged as (inherited) debug. This carries on until there are no more outputs, or another debug component is reached.

Visual appearance

Components should have a clear and distinctive style (for the default skin anyway). Perhaps a component can be divided up into several areas: outline, inputs, outputs, identification, display. A components editing module will specify which of these it has, how big they need-to/can be, how they should ideally be arranged.

Simple component

Adder:

[diagram: small outline, in on left, id in centre, out on right, no display.]

Edit box:

[diagram: medium outline, in on left, no id, display in centre (edit box), out on right.]

Medium component

Image:

[diagram: medium outline, in on left, id?, display in centre, out on right]

The outline would be resizable, and the display could be panned and zoomed.

Complex component

Sequencer:

[diagram: large outline, in on left, id at top, editing display in centre, out on right]

The outline would be resizable, the display would include editing controls and buttons.

Workspace

All components should scale gracefully so that larger areas of the workspace can be viewed for easier navigation and editing of larger, more complex circuits.

GUI Components

Some components are interactive (e.g. input field, push button, indicator), but for standalone operation (command line), these won’t mean anything. In this case, the circuit should still work, but not form any useful function. However, the idea of building dialogs out of these components is appealing.

Hybrid Circuit

Thoughts on what a hybrid circuit will actually consist of:

// ______________________________

// |cctTest |

// | ______ ______ |

// | |icADDi| |icNEGi| |

// InA --+------+ A | x | | |

// | | O +---+ A O +-----+-- OutO

// InB --+------+ B | | | |

// | |______| |______| |

// | |

// |______________________________|

//

//..is better represented as..

//

// ________________________________

// ||cctTest ||

// || ______ ______ ||

// ||SrcA |icADDi| |icNEGi| ||

// InA -++------+ A | x | | SnkO||

// || | O +---+ A O +-----++- OutO

// InB -++------+ B | | | ||

// ||SrcB |______| |______| ||

// || |+ SrcA

//(SnkO)+|______________________________|+ SrcB

//

//..which is effectively..

// _____________

// |cctTest |

// InA --------+ InA SrcA +---+---- SrcA

// InB --------+ InB SrcB +--+|---- SrcB

// (SnkO) ,--+ SnkO OutO +--||---- OutO

// | |_____________| ||

// | ||

// '-------------------||--,

// ,+====================+' |

// || ______ ______ |

// || |icADDi| |icNEGi| |

// |'--+ A | x | | |

// | | O +---+ A O +---'

// '---+ B | | |

// |______| |______|

//

//ic's are implemented in code (and are indivisible, black boxes)

//cct's are implemented in data as a collections of ic's and cct's

//All in/out nodes within a circuit are represented by IO pin pairs.

//All inputs are present as outputs (SrcA,SrcB).

//Internal outputs are NOT presented as inputs (SnkO).

//No internal nodes (x) are presented to the outside world.

//Any channel fed from a CCT _source_ output can be optimised through until a component is reached

//

//..then for a component, how about..

//

// _____________

// |icADDi |

// InA --------+ InA SrcA +---+---- SrcA

// InB --------+ InB SrcB +--+|---- SrcB

// (SnkO) ,--+ SnkO OutO +--||---- OutO

// | |_____________| ||

// | ||

// '-------------------||--,

// ,+====================+' |

// || _________________ |

// || | | |

// |'--+ A | |

// | | update fn O +---'

// '---+ B |

// |_________________|

//

//

//..and then perhaps..

//(combining io pin pairs into one object

// _______

// |icADDi |

// InA -----------+ ConnA +------+---- SrcA

// InB -----------+ ConnB +-----+|---- SrcB

// (SnkO) ,-----+ ConnO +-----||---- OutO

// | |_______| ||

// | ||

// '-------------------||--,

// ,+====================+' |

// || _________________ |

// || | | |

// |'--+ A | |

// | | update fn O +---'

// '---+ B |

// |_________________|

//

//..or for the cct case above..

//

// _________

// |cctTest |

// InA ----------+ ConnA +------+---- SrcA

// InB ----------+ ConnB +-----+|---- SrcB

// (SnkO) ,----+ ConnO +-----||---- OutO

// | |_________| ||

// | ||

// '--------------------||-----,

// ,+==========================+' |

// || _______ _______ |

// || |icADDi | x |icNEGi | |

// |'--+ ConnA +--, ,---+ ConnA +-, |

// '---+ ConnB +-,| | | | | |

// ,-+ ConnO +-||---' ,-+ ConnO +---'

// | |_______| || | |_______| |

// | || | |

// ,+==============+' ,-------------'

// || '------------, | '-------------,

// || _________ | | _________ |

// || |update | | | |update | |

// |'--+ A fn | | | | fn | |

// | | O +--' '--+ A O +--'

// '---+ B | | |

// |_________| |_________|

//

//Here, icADDi and icNEGi are virtually redundant as most of the Conn's will

//get optimised out at connection time, only icADDi::ConnO and icNEGi::ConnO

//will be needed, all other inputs will end up connected to cctTest or propagated

//further out still. inputs coming via cctTest::OutO will end up connected

//to icNEGi::ConnO.

//

//..hence the following will result, after optimisation, all the intermediate

// connections are redundant and everything connects directly..

//

// _________

// |cctTest |

// InA ---------------------------+ - - SrcA

// InB --------------------------+| - - SrcB

// ,--------------------||---- OutO

// | |_________| ||

// | ||

// '--------------------||-----,

// ,+==========================+' |

// || _______ _______ |

// || |icADDi | x |icNEGi | |

// |'-------------, ,-------------, |

// '-------------,| | | | | |

// ,-+ ConnO +-||---' ,-+ ConnO +---'

// | |_______| || | |_______| |

// | || | |

// ,+==============+' ,-------------'

// || '------------, | '-------------,

// || _________ | | _________ |

// || |update | | | |update | |

// |'--+ A fn | | | | fn | |

// | | O +--' '--+ A O +--'

// '---+ B | | |

// |_________| |_________|

//

// Outputs store the results of update functions which call on the outputs they're

// connected to to update also.

//

//

// Update fns have Conn ptrs at their inputs and outputs

//

//

