Visual Information Circuitry Engineering

Technical Design

Systems

Engine

· Runs circuitry on a machine.

Component Library

· Catalogue of component types.

· Data for Circuit types.

· DLLs implementing IC types.

Monitor

· Manages and monitors engines running on a machine.

· Creates new engine instances.

· Can terminate and restart engine instances.

· Manages versioning and distribution/upgrades of engine components.

Editor

· User interface to engines running on various machines.

· Provides means to create and edit circuits.

· Used for monitoring and manipulating live circuits.

· Manages and organises components and circuit parts.

· Manages and organises machines involved in implementing the system.

Engine

Hierarchy

· System

· Machines

· Engines

· Racks

· Circuits

· Connections (Pins/Wires)

· Components (Circuits/ICs)

System

· The top level of the hierarchy.

· Embodies the problem you are solving, the application you are implementing.

· Does not preclude communication between systems and/or other parts external to a system.

· Made up from a single machine or a network of machines.

Machines

· Physical hardware units.

· Circuits interface with the real world via a machines peripherals and IO.

· Hosts one or more VICE engines.

Engines

· Runs the circuits assigned to a machine.

· Normally the only reason to have more than one engine running on a machine is a) if you have more than one system using a machine, or b) if you want parts of your system on a machine to have the added security that isolation between engine processes provides, e.g. a watchdog engine.

· Runs in a process.

Racks

· Distinct circuit groups.

· Runs on a thread (although these can be shared)

· Inter-thread communication treated in similar manner to inter machine communication. I.e. needs to be buffered/interlocked.

· Distinct update rate/logic.

· Maintains freshness counter for all contained circuits.

· A rack is a (unique) circuit.

Circuits

· Collection of interconnected sub-components.

· A circuit is a component in its own right.

· Can be instanced in other circuits.

ICs (Integrated Circuit)

· Elemental circuit block.

· Performs a basic function.

· Functionality implemented in code.

· Can be an IO point, i.e. provide interface to outside (hardware, OS, UI) world.

· Special internal types used for gluing, interfacing and mediation.

Components

· Circuits and IC’s are components.

· Circuits can be source components and/or sink components.

· Circuits either are or aren’t deterministic.

Source Component

· Contains input IO functionality. (Outside of rack)

· Originator of change.

Sink Component

· Contains output IO functionality. (Outside of rack)

· Driver of updates.

Deterministic Component

· Outputs only depend on inputs.

· Outputs only change when inputs change.

· No stored state

Non-deterministic Component

· Outputs might not depend on inputs.

· Source of change.

· Stored state, should be persisted (e.g. between restarts)

· E.g.: Time source, IO.

Dynamic Component Arrays

· An arrayed input applied to a non-arrayed pin causes the circuit to become arrayed.

· An arrayed circuit causes its outputs to become arrayed.

· Arraying a circuit will unplug all outputs and leave them dangling pending decision on how to connect up downstream circuitry to the newly arrayed outputs.

· Process pin input-output pairs can be marked to signify that when a component is dynamically arrayed they are implicitly chained together in the order of the controlling array.

· Where more than one array input connection has caused a component to become arrayed, the largest array controls the number of arrayed components. Input pins of the smaller arrays that don’t have a corresponding array entry are left connected to the pins natural default value.

· Arrayed components gain an input meta-pin to limit the maximum components allowed and an output meta-pin to indicate if this is exceeded.

Pins

· Connection points on components.

· Value or Reference type.

· Input or output.

· Control or process.

Input Pins

· Connect to one output pin.

· Dirty checking value.

Output Pins

· Can connect to one or more input pins.

· Stores state.

· Dirty counter.

· Freshness counter.

Arrays

· Can be arrayed

· Equivalent to multiple pins

· Count property

· Wires are ‘multicore’

Metapins

· Sometimes components will automatically obtain extra pins to do with the circuit configuration or operational state itself.

· E.g. dynamic component arrays have a component limit and overflow pins.

Wires

· Interconnection between circuits.

· Connects an input to and output.

· Editor only concept

Buses

· Global or Circuit scoped wiring

· Can exist at any level

· Available to all circuits beneath

· Automatic contention arbitration mechanisms (e.g. Sum, Max, Min, Or, And, Xor, Average, Array)

· Connection is visualised as an ‘off circuit’ connection, no ‘long distance’ wiring required.

· A bus is declared in a single place. The containing element owns it.

· A bus available above the rack level has dynamic connection semantics. I.e. connections from outside may come and go outside of edit time. This would occur as machines are brought on or off line or connections lost/re-made.

Multicores

· Editor only extension of wires

· Make editing easier by allowing grouping of wires

· Arrayed signals are treated as a single wire

· Grouped signals are treated as a single wire

· Breakout boxes automatically available to combine/split multicores

· Multiway pins available to hide multiple pin connections

· Buses can be multicore

Data Types

Value Types

· Integer

· Unsigned integer

· Floating point value

· Boolean

· Character

· String

· Trigger

Reference Types

· String

· Image

· Stream

Trigger

· Integer counter

· Each increment signifies an event

· Accumulation allows multiple events to be passed during a single update phase. This ensures no hardware events are lost.

· Single edge trigger for button presses (triggers on press, but not release).

· Double edge trigger for button presses AND current state (triggers on press AND release, hence bit 0 reflects current button state).

Control and Process

· Conceptually: Control flows horizontally, left to right. Process flows vertically, top to bottom.

· Control data is passed by value or ‘const’ reference. I.e. simple control values or read-only object data.

· Processing is on object data passed by reference.

Freshness

· Data on a pin has a freshness number.

· Every update the rack freshness number increments.

· Freshness ensures data on a pin is up to date.

· Freshness avoids output pins being evaluated more than once by multiple input pins connected to them.

Dirtyness

· Objects have a dirtyness number.

· Every time the object changes the dirtyness number is incremented.

· Dirtyness avoids change being propagated unnecessarily.

· Advanced dirtyness tracking can be employed for specifc types. E.g. dirty rectangle for an image object.

Editing

· An editor communicates with an Engine to manipulate and watch circuits.

· All editing is done live.

· Racks can have their updates paused during editing if required.

· Editing is performed via a set of commands.

· For debugging and live state display, Watches can be instantiated to stream state information back to the editor.

Commands

· Commands can be edits or requests for information.

· Encapsulates a single editing operation or information request.

· Serialisable via a standardised easily transmissible format.

· Command contains all information needed to perform the operation.

· Tools yield do and undo pairs simultaneously.

· Editor maintains do/undo history, storing previous commands.

· All commands have a corresponding Response from the Engine to the Editor.

Responses

· Returns information about a command.

· Always contains success information.

· May contain information about disrupted Watches.

· Can contain information that was requested (from a single integer to a block of raw binary).

Watches

· Instantiated in Engines.

· Feed state of a circuit back to the editor.

· Stream state or state changes.

· Attached to a pin or IC.

· Do not drive updates (must be non-intrusive).

· Editing operations need to ensure Watch integrity is maintained.

Operation

· Each Rack runs an update cycle.

· An update cycle visits all sink points once to get them up to date.

· Updating involves a recursive trace from all the sink point input pins to their driving output pins back to their ultimate driving source point(s).

· Freshness and dirtyness of pin data prevents redundant updates of shared circuitry.

· Dynamic optimisation by short-circuiting can be performed as part of running a circuit. (Editing will reset optimisations.)

Component Library

Catalogue

· All component types available.

· Component types grouped according to function.

· Functional groups arranged in a hierarchy.

Circuit types

· Structure of each type of circuit.

· Visual layout of circuits for editor.

IC types

· DLL libraries of IC implementations.

Component types

· Common information about a type of circuit or IC.

Synchronisation

· Component Libraries must be synchronised across a System.

Versioning

· Components are versioned in the following order:

· Fundamental changes (library architecture).

· Breaking changes (pins, removed components).

· Non-breaking Content changes (additional components).

· Non-breaking implementation changes (code changes/fixes).

Editor

UI

· Visual display of Engine contents.

· Navigation of circuitry hierarchy, structure and interconnections.

· Live display of circuit state.

· Converts editing operations into commands for Engine.

Communications

· Editor needs to communicate with all Engines on all Machines.

· Communication to Engines is routed via the Monitor running on each machine.

Component Library

Pure Systems

Mathematics

Logic

Strings

Collections

Sequencing/Timers

Counters/Signal generators

Routing/Control

Multiplexing/Demultiplexing

Type conversion (Adaptors)

Breakout/Merge

Buffering and Streaming

System Services

Files, Directories

Registry

Time and Date

Machine settings and environment

IO

Communications (Network)

Ports (parallel/serial)

Dedicated hardware (USB proto card)

UI

Keyboard

Mouse

DirectInput

Graphical Display

Direct3D

GUI/Windows/Forms

DirectMedia (cameras)

Databases/ Protocols/APIs

SQL

LDAP

HTTP

COM

High-Level Objects

Image

Sound

To Flesh Out

Communications system

Arrays (multicore)

Arrays (dynamic component arrays)

Buses

Persistence of state (if needed)

Buffering (inter-thread)

Buffering (network)

Upgrade and distribution

Editor only data

Editor wire/multicore/multipin management

Editor wire routing

Memory management of a circuits collective outputs

